Copied to
clipboard

G = C62.16D6order 432 = 24·33

16th non-split extension by C62 of D6 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C62.16D6, (D4×He3)⋊6C2, He37D44C2, He34Q85C2, (C3×C12).32D6, (D4×C32)⋊6S3, He310(C4○D4), D42(He3⋊C2), C326(D42S3), (C2×He3).34C23, (C4×He3).24C22, C3.2(C12.D6), He33C4.19C22, (C22×He3).14C22, C12.49(C2×C3⋊S3), (C2×He33C4)⋊7C2, (C4×He3⋊C2)⋊5C2, C6.66(C22×C3⋊S3), C4.5(C2×He3⋊C2), (C3×D4).10(C3⋊S3), (C3×C6).44(C22×S3), C2.7(C22×He3⋊C2), C22.1(C2×He3⋊C2), (C2×He3⋊C2).18C22, (C2×C6).10(C2×C3⋊S3), SmallGroup(432,391)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C62.16D6
C1C3C32He3C2×He3C2×He3⋊C2C4×He3⋊C2 — C62.16D6
He3C2×He3 — C62.16D6
C1C6C3×D4

Generators and relations for C62.16D6
 G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, cac-1=ab-1, dad-1=a-1b4, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 749 in 220 conjugacy classes, 53 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×D4, C3×Q8, He3, C3×Dic3, C3×C12, S3×C6, C62, D42S3, C3×C4○D4, He3⋊C2, C2×He3, C2×He3, C3×Dic6, S3×C12, C6×Dic3, C3×C3⋊D4, D4×C32, He33C4, He33C4, C4×He3, C2×He3⋊C2, C22×He3, C3×D42S3, He34Q8, C4×He3⋊C2, C2×He33C4, He37D4, D4×He3, C62.16D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, C2×C3⋊S3, D42S3, He3⋊C2, C22×C3⋊S3, C2×He3⋊C2, C12.D6, C22×He3⋊C2, C62.16D6

Smallest permutation representation of C62.16D6
On 72 points
Generators in S72
(1 69 33 47 29 61)(2 46 60 42 6 14)(3 17 11 37 57 45)(4 66 36 44 32 70)(5 43 51 39 9 23)(7 63 27 41 35 67)(8 40 54 48 12 20)(10 72 30 38 26 64)(13 31 21 53 71 49)(15 59 65 55 19 25)(16 28 24 50 62 58)(18 56 68 52 22 34)
(1 31 51 7 25 57)(2 32 52 8 26 58)(3 33 53 9 27 59)(4 34 54 10 28 60)(5 35 55 11 29 49)(6 36 56 12 30 50)(13 43 67 19 37 61)(14 44 68 20 38 62)(15 45 69 21 39 63)(16 46 70 22 40 64)(17 47 71 23 41 65)(18 48 72 24 42 66)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 20 19 14)(15 18 21 24)(16 23 22 17)(25 30 31 36)(26 35 32 29)(27 28 33 34)(37 44 43 38)(39 42 45 48)(40 47 46 41)(49 58 55 52)(50 51 56 57)(53 54 59 60)(61 68 67 62)(63 66 69 72)(64 71 70 65)

G:=sub<Sym(72)| (1,69,33,47,29,61)(2,46,60,42,6,14)(3,17,11,37,57,45)(4,66,36,44,32,70)(5,43,51,39,9,23)(7,63,27,41,35,67)(8,40,54,48,12,20)(10,72,30,38,26,64)(13,31,21,53,71,49)(15,59,65,55,19,25)(16,28,24,50,62,58)(18,56,68,52,22,34), (1,31,51,7,25,57)(2,32,52,8,26,58)(3,33,53,9,27,59)(4,34,54,10,28,60)(5,35,55,11,29,49)(6,36,56,12,30,50)(13,43,67,19,37,61)(14,44,68,20,38,62)(15,45,69,21,39,63)(16,46,70,22,40,64)(17,47,71,23,41,65)(18,48,72,24,42,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,20,19,14)(15,18,21,24)(16,23,22,17)(25,30,31,36)(26,35,32,29)(27,28,33,34)(37,44,43,38)(39,42,45,48)(40,47,46,41)(49,58,55,52)(50,51,56,57)(53,54,59,60)(61,68,67,62)(63,66,69,72)(64,71,70,65)>;

G:=Group( (1,69,33,47,29,61)(2,46,60,42,6,14)(3,17,11,37,57,45)(4,66,36,44,32,70)(5,43,51,39,9,23)(7,63,27,41,35,67)(8,40,54,48,12,20)(10,72,30,38,26,64)(13,31,21,53,71,49)(15,59,65,55,19,25)(16,28,24,50,62,58)(18,56,68,52,22,34), (1,31,51,7,25,57)(2,32,52,8,26,58)(3,33,53,9,27,59)(4,34,54,10,28,60)(5,35,55,11,29,49)(6,36,56,12,30,50)(13,43,67,19,37,61)(14,44,68,20,38,62)(15,45,69,21,39,63)(16,46,70,22,40,64)(17,47,71,23,41,65)(18,48,72,24,42,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,20,19,14)(15,18,21,24)(16,23,22,17)(25,30,31,36)(26,35,32,29)(27,28,33,34)(37,44,43,38)(39,42,45,48)(40,47,46,41)(49,58,55,52)(50,51,56,57)(53,54,59,60)(61,68,67,62)(63,66,69,72)(64,71,70,65) );

G=PermutationGroup([[(1,69,33,47,29,61),(2,46,60,42,6,14),(3,17,11,37,57,45),(4,66,36,44,32,70),(5,43,51,39,9,23),(7,63,27,41,35,67),(8,40,54,48,12,20),(10,72,30,38,26,64),(13,31,21,53,71,49),(15,59,65,55,19,25),(16,28,24,50,62,58),(18,56,68,52,22,34)], [(1,31,51,7,25,57),(2,32,52,8,26,58),(3,33,53,9,27,59),(4,34,54,10,28,60),(5,35,55,11,29,49),(6,36,56,12,30,50),(13,43,67,19,37,61),(14,44,68,20,38,62),(15,45,69,21,39,63),(16,46,70,22,40,64),(17,47,71,23,41,65),(18,48,72,24,42,66)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,20,19,14),(15,18,21,24),(16,23,22,17),(25,30,31,36),(26,35,32,29),(27,28,33,34),(37,44,43,38),(39,42,45,48),(40,47,46,41),(49,58,55,52),(50,51,56,57),(53,54,59,60),(61,68,67,62),(63,66,69,72),(64,71,70,65)]])

50 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F4A4B4C4D4E6A6B6C6D6E6F6G6H6I6J6K···6R6S6T12A12B12C12D12E12F12G12H12I12J12K12L12M12N
order122223333334444466666666666···6661212121212121212121212121212
size1122181166662991818112222666612···1218182299991212121218181818

50 irreducible representations

dim111111222233346
type+++++++++-
imageC1C2C2C2C2C2S3D6D6C4○D4He3⋊C2C2×He3⋊C2C2×He3⋊C2D42S3C62.16D6
kernelC62.16D6He34Q8C4×He3⋊C2C2×He33C4He37D4D4×He3D4×C32C3×C12C62He3D4C4C22C32C1
# reps111221448244844

Matrix representation of C62.16D6 in GL5(𝔽13)

08000
50000
00010
00009
001000
,
120000
012000
00900
00090
00009
,
50000
08000
00010
00001
001200
,
50000
05000
00001
00010
00100

G:=sub<GL(5,GF(13))| [0,5,0,0,0,8,0,0,0,0,0,0,0,0,10,0,0,1,0,0,0,0,0,9,0],[12,0,0,0,0,0,12,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[5,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,1,0],[5,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0] >;

C62.16D6 in GAP, Magma, Sage, TeX

C_6^2._{16}D_6
% in TeX

G:=Group("C6^2.16D6");
// GroupNames label

G:=SmallGroup(432,391);
// by ID

G=gap.SmallGroup(432,391);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,135,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b^4,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽