Copied to
clipboard

G = C62.16D6order 432 = 24·33

16th non-split extension by C62 of D6 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C62.16D6, (D4xHe3):6C2, He3:7D4:4C2, He3:4Q8:5C2, (C3xC12).32D6, (D4xC32):6S3, He3:10(C4oD4), D4:2(He3:C2), C32:6(D4:2S3), (C2xHe3).34C23, (C4xHe3).24C22, C3.2(C12.D6), He3:3C4.19C22, (C22xHe3).14C22, C12.49(C2xC3:S3), (C2xHe3:3C4):7C2, (C4xHe3:C2):5C2, C6.66(C22xC3:S3), C4.5(C2xHe3:C2), (C3xD4).10(C3:S3), (C3xC6).44(C22xS3), C2.7(C22xHe3:C2), C22.1(C2xHe3:C2), (C2xHe3:C2).18C22, (C2xC6).10(C2xC3:S3), SmallGroup(432,391)

Series: Derived Chief Lower central Upper central

C1C3C2xHe3 — C62.16D6
C1C3C32He3C2xHe3C2xHe3:C2C4xHe3:C2 — C62.16D6
He3C2xHe3 — C62.16D6
C1C6C3xD4

Generators and relations for C62.16D6
 G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, cac-1=ab-1, dad-1=a-1b4, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 749 in 220 conjugacy classes, 53 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, D4, D4, Q8, C32, Dic3, C12, C12, D6, C2xC6, C2xC6, C4oD4, C3xS3, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C3:D4, C2xC12, C3xD4, C3xD4, C3xQ8, He3, C3xDic3, C3xC12, S3xC6, C62, D4:2S3, C3xC4oD4, He3:C2, C2xHe3, C2xHe3, C3xDic6, S3xC12, C6xDic3, C3xC3:D4, D4xC32, He3:3C4, He3:3C4, C4xHe3, C2xHe3:C2, C22xHe3, C3xD4:2S3, He3:4Q8, C4xHe3:C2, C2xHe3:3C4, He3:7D4, D4xHe3, C62.16D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C3:S3, C22xS3, C2xC3:S3, D4:2S3, He3:C2, C22xC3:S3, C2xHe3:C2, C12.D6, C22xHe3:C2, C62.16D6

Smallest permutation representation of C62.16D6
On 72 points
Generators in S72
(1 69 33 47 29 61)(2 46 60 42 6 14)(3 17 11 37 57 45)(4 66 36 44 32 70)(5 43 51 39 9 23)(7 63 27 41 35 67)(8 40 54 48 12 20)(10 72 30 38 26 64)(13 31 21 53 71 49)(15 59 65 55 19 25)(16 28 24 50 62 58)(18 56 68 52 22 34)
(1 31 51 7 25 57)(2 32 52 8 26 58)(3 33 53 9 27 59)(4 34 54 10 28 60)(5 35 55 11 29 49)(6 36 56 12 30 50)(13 43 67 19 37 61)(14 44 68 20 38 62)(15 45 69 21 39 63)(16 46 70 22 40 64)(17 47 71 23 41 65)(18 48 72 24 42 66)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 20 19 14)(15 18 21 24)(16 23 22 17)(25 30 31 36)(26 35 32 29)(27 28 33 34)(37 44 43 38)(39 42 45 48)(40 47 46 41)(49 58 55 52)(50 51 56 57)(53 54 59 60)(61 68 67 62)(63 66 69 72)(64 71 70 65)

G:=sub<Sym(72)| (1,69,33,47,29,61)(2,46,60,42,6,14)(3,17,11,37,57,45)(4,66,36,44,32,70)(5,43,51,39,9,23)(7,63,27,41,35,67)(8,40,54,48,12,20)(10,72,30,38,26,64)(13,31,21,53,71,49)(15,59,65,55,19,25)(16,28,24,50,62,58)(18,56,68,52,22,34), (1,31,51,7,25,57)(2,32,52,8,26,58)(3,33,53,9,27,59)(4,34,54,10,28,60)(5,35,55,11,29,49)(6,36,56,12,30,50)(13,43,67,19,37,61)(14,44,68,20,38,62)(15,45,69,21,39,63)(16,46,70,22,40,64)(17,47,71,23,41,65)(18,48,72,24,42,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,20,19,14)(15,18,21,24)(16,23,22,17)(25,30,31,36)(26,35,32,29)(27,28,33,34)(37,44,43,38)(39,42,45,48)(40,47,46,41)(49,58,55,52)(50,51,56,57)(53,54,59,60)(61,68,67,62)(63,66,69,72)(64,71,70,65)>;

G:=Group( (1,69,33,47,29,61)(2,46,60,42,6,14)(3,17,11,37,57,45)(4,66,36,44,32,70)(5,43,51,39,9,23)(7,63,27,41,35,67)(8,40,54,48,12,20)(10,72,30,38,26,64)(13,31,21,53,71,49)(15,59,65,55,19,25)(16,28,24,50,62,58)(18,56,68,52,22,34), (1,31,51,7,25,57)(2,32,52,8,26,58)(3,33,53,9,27,59)(4,34,54,10,28,60)(5,35,55,11,29,49)(6,36,56,12,30,50)(13,43,67,19,37,61)(14,44,68,20,38,62)(15,45,69,21,39,63)(16,46,70,22,40,64)(17,47,71,23,41,65)(18,48,72,24,42,66), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,20,19,14)(15,18,21,24)(16,23,22,17)(25,30,31,36)(26,35,32,29)(27,28,33,34)(37,44,43,38)(39,42,45,48)(40,47,46,41)(49,58,55,52)(50,51,56,57)(53,54,59,60)(61,68,67,62)(63,66,69,72)(64,71,70,65) );

G=PermutationGroup([[(1,69,33,47,29,61),(2,46,60,42,6,14),(3,17,11,37,57,45),(4,66,36,44,32,70),(5,43,51,39,9,23),(7,63,27,41,35,67),(8,40,54,48,12,20),(10,72,30,38,26,64),(13,31,21,53,71,49),(15,59,65,55,19,25),(16,28,24,50,62,58),(18,56,68,52,22,34)], [(1,31,51,7,25,57),(2,32,52,8,26,58),(3,33,53,9,27,59),(4,34,54,10,28,60),(5,35,55,11,29,49),(6,36,56,12,30,50),(13,43,67,19,37,61),(14,44,68,20,38,62),(15,45,69,21,39,63),(16,46,70,22,40,64),(17,47,71,23,41,65),(18,48,72,24,42,66)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,20,19,14),(15,18,21,24),(16,23,22,17),(25,30,31,36),(26,35,32,29),(27,28,33,34),(37,44,43,38),(39,42,45,48),(40,47,46,41),(49,58,55,52),(50,51,56,57),(53,54,59,60),(61,68,67,62),(63,66,69,72),(64,71,70,65)]])

50 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F4A4B4C4D4E6A6B6C6D6E6F6G6H6I6J6K···6R6S6T12A12B12C12D12E12F12G12H12I12J12K12L12M12N
order122223333334444466666666666···6661212121212121212121212121212
size1122181166662991818112222666612···1218182299991212121218181818

50 irreducible representations

dim111111222233346
type+++++++++-
imageC1C2C2C2C2C2S3D6D6C4oD4He3:C2C2xHe3:C2C2xHe3:C2D4:2S3C62.16D6
kernelC62.16D6He3:4Q8C4xHe3:C2C2xHe3:3C4He3:7D4D4xHe3D4xC32C3xC12C62He3D4C4C22C32C1
# reps111221448244844

Matrix representation of C62.16D6 in GL5(F13)

08000
50000
00010
00009
001000
,
120000
012000
00900
00090
00009
,
50000
08000
00010
00001
001200
,
50000
05000
00001
00010
00100

G:=sub<GL(5,GF(13))| [0,5,0,0,0,8,0,0,0,0,0,0,0,0,10,0,0,1,0,0,0,0,0,9,0],[12,0,0,0,0,0,12,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[5,0,0,0,0,0,8,0,0,0,0,0,0,0,12,0,0,1,0,0,0,0,0,1,0],[5,0,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0] >;

C62.16D6 in GAP, Magma, Sage, TeX

C_6^2._{16}D_6
% in TeX

G:=Group("C6^2.16D6");
// GroupNames label

G:=SmallGroup(432,391);
// by ID

G=gap.SmallGroup(432,391);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,135,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b^4,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<